Tích phân là gì? Các công bố khoa học về Tích phân

Tích phân là một phép toán trong toán học, được sử dụng để tính diện tích dưới đồ thị của một hàm số, hoặc tính tổng của các giá trị của hàm số trên một khoảng ...

Tích phân là một phép toán trong toán học, được sử dụng để tính diện tích dưới đồ thị của một hàm số, hoặc tính tổng của các giá trị của hàm số trên một khoảng xác định. Tích phân có thể được hiểu là việc chia một diện tích (hoặc một tổng) lớn thành các mảnh nhỏ hơn, và sau đó cộng tổng các diện tích (tổng) của các mảnh nhỏ lại với nhau để thu được kết quả cuối cùng. Công thức tích phân thông thường được biểu diễn bằng dấu tích phân (∫) và biểu thị sự tích phân của một hàm số f(x) từ điểm a đến điểm b là ∫f(x)dx.
Tích phân được phát triển từ khái niệm diện tích và tổng. Đầu tiên, ta xem xét trường hợp đơn giản là tích phân các hàm số không âm trên một khoảng xác định [a, b]. Giả sử ta chia khoảng này thành nhiều phần bằng nhau, và xây dựng các hình chữ nhật có chiều rộng như nhau trên các đoạn con của khoảng [a, b]. Khi đó, diện tích của mỗi hình chữ nhật sẽ là chiều rộng (được gọi là độ lớn của phân đoạn, ký hiệu là Δx) nhân với độ cao của hàm số tại một điểm trong phân đoạn đó (được gọi là giá trị của hàm số trong phân đoạn đó). Tổng diện tích của tất cả các hình chữ nhật này sẽ xấp xỉ được diện tích dưới đồ thị của hàm số trên khoảng [a, b].

Để tính diện tích chính xác hơn, ta có thể tăng số phần đoạn chia khoảng [a, b] và tiếp tục xây dựng các hình chữ nhật nhỏ hơn. Khi giới hạn số lượng phần đoạn đến vô cùng, kích thước của từng phân đoạn sẽ tiến tới 0 và diện tích chính xác được xác định bằng cách tích phân.

Công thức tích phân chuẩn được biểu diễn bằng ký hiệu tích phân (∫) và được viết sau hàm số. Ví dụ, nếu ta muốn tính diện tích dưới đồ thị của một hàm số f(x) từ điểm a đến điểm b, ta sẽ viết ∫f(x)dx, trong đó dx biểu thị cho kích thước phân đoạn. Việc tích phân f(x)dx sẽ cho chúng ta kết quả là diện tích dưới đồ thị của hàm số f(x) trên khoảng [a, b].
Để chi tiết hơn, cách chúng ta tính toán tích phân phụ thuộc vào loại tích phân và hàm số cụ thể.

1. Tích phân xác định:
- Tích phân xác định được sử dụng để tính diện tích dưới đồ thị của một hàm số trên một khoảng xác định [a, b].
- Để tính tích phân xác định, chúng ta chia khoảng [a, b] thành các phân đoạn nhỏ hơn và tính diện tích của từng phân đoạn. Sau đó, ta tổng hợp diện tích các phân đoạn lại để xấp xỉ diện tích dưới đồ thị của hàm số.
- Khi thực hiện phép xấp xỉ này với số phân đoạn càng tăng, ta thu được kết quả gần đúng hơn với giá trị chính xác của tích phân.
- Công thức tích phân xác định được biểu diễn bằng ∫f(x)dx từ a đến b.

2. Tích phân không xác định:
- Tích phân không xác định được sử dụng để tìm một hàm số gốc (còn gọi là hàm nguyên hàm) của một hàm số cụ thể.
- Để tính tích phân không xác định, ta cần tìm hàm số F(x) sao cho F'(x) = f(x), trong đó F'(x) biểu thị đạo hàm của hàm số F(x).
- Công thức tích phân không xác định được biểu diễn bằng F(x) + C, trong đó C là hằng số tích cực.

Có nhiều phương pháp khác nhau để tính toán tích phân, bao gồm phương pháp thủ công và phương pháp số. Phương pháp thủ công bao gồm sử dụng quy tắc cộng, quy tắc nhân, quy tắc chuỗi và quy tắc bất định để tính toán tích phân. Phương pháp số sử dụng các phương pháp số học hoặc lập trình để xấp xỉ giá trị của tích phân.

Danh sách công bố khoa học về chủ đề "tích phân":

Phân tích làm giàu bộ gen: Phương pháp dựa trên tri thức để diễn giải hồ sơ biểu hiện gen toàn bộ hệ gen Dịch bởi AI
Proceedings of the National Academy of Sciences of the United States of America - Tập 102 Số 43 - Trang 15545-15550 - 2005

Mặc dù phân tích biểu hiện RNA toàn bộ hệ gen đã trở thành một công cụ thường xuyên trong nghiên cứu y sinh, việc rút ra hiểu biết sinh học từ thông tin đó vẫn là một thách thức lớn. Tại đây, chúng tôi mô tả một phương pháp phân tích mạnh mẽ gọi là Phân tích Làm giàu Bộ gen (GSEA) để diễn giải dữ liệu biểu hiện gen. Phương pháp này đạt được sức mạnh của nó bằng cách tập trung vào các bộ gen, tức là các nhóm gen chia sẻ chức năng sinh học chung, vị trí nhiễm sắc thể hoặc sự điều hòa. Chúng tôi chứng minh cách GSEA cung cấp những hiểu biết sâu sắc vào một số tập dữ liệu liên quan đến ung thư, bao gồm bệnh bạch cầu và ung thư phổi. Đáng chú ý, trong khi phân tích từng gen cho thấy ít giống nhau giữa hai nghiên cứu độc lập về sự sống sót của bệnh nhân ung thư phổi, GSEA lại tiết lộ nhiều con đường sinh học chung. Phương pháp GSEA được hiện thực hóa trong một gói phần mềm miễn phí, cùng với một cơ sở dữ liệu ban đầu gồm 1.325 bộ gen định nghĩa sinh học.

#RNA biểu hiện toàn bộ hệ gen; GSEA; bộ gen; ung thư; bệnh bạch cầu; phân tích ứng dụng; hồ sơ biểu hiện
MEGA7: Phân Tích Di Truyền Phân Tử Phiên Bản 7.0 cho Dữ Liệu Lớn Hơn Dịch bởi AI
Molecular Biology and Evolution - Tập 33 Số 7 - Trang 1870-1874 - 2016
Tóm tắt

Chúng tôi giới thiệu phiên bản mới nhất của phần mềm Phân Tích Di Truyền Phân Tử (MEGA), bao gồm nhiều phương pháp và công cụ tinh vi cho phân loại gen và y học phân loại. Trong lần nâng cấp lớn này, MEGA đã được tối ưu hóa để sử dụng trên các hệ thống máy tính 64-bit nhằm phân tích các tập dữ liệu lớn hơn. Các nhà nghiên cứu giờ đây có thể khám phá và phân tích hàng chục nghìn chuỗi trong MEGA. Phiên bản mới cũng cung cấp một trình hướng dẫn nâng cao để xây dựng cây thời gian và bao gồm chức năng mới để tự động dự đoán các sự kiện sao chép gen trong các cây họ gen. MEGA 64-bit được cung cấp qua hai giao diện: đồ họa và dòng lệnh. Giao diện người dùng đồ họa (GUI) là một ứng dụng dành cho Microsoft Windows có thể sử dụng cả trên Mac OS X. Dòng lệnh MEGA có sẵn dưới dạng ứng dụng gốc cho Windows, Linux và Mac OS X. Chúng được thiết kế để sử dụng trong phân tích quy mô lớn và phân tích kịch bản. Cả hai phiên bản đều được cung cấp miễn phí từ www.megasoftware.net.

#MEGA #phân tích di truyền #phân loại gen #y học phân loại #dữ liệu lớn #phần mềm khoa học
Ba Cách Tiếp Cận Đối Với Phân Tích Nội Dung Định Tính Dịch bởi AI
Qualitative Health Research - Tập 15 Số 9 - Trang 1277-1288 - 2005

Phân tích nội dung là một kỹ thuật nghiên cứu định tính được sử dụng rộng rãi. Thay vì là một phương pháp duy nhất, các ứng dụng hiện nay của phân tích nội dung cho thấy ba cách tiếp cận khác biệt: thông thường, có định hướng hoặc tổng hợp. Cả ba cách tiếp cận này đều được dùng để diễn giải ý nghĩa từ nội dung của dữ liệu văn bản và do đó, tuân theo hệ hình tự nhiên. Các khác biệt chính giữa các cách tiếp cận là các bộ mã hóa, nguồn gốc của mã hóa và mối đe dọa đến độ tin cậy. Trong phân tích nội dung thông thường, các danh mục mã hóa được lấy trực tiếp từ dữ liệu văn bản. Với một cách tiếp cận có định hướng, phân tích bắt đầu với một lý thuyết hoặc các kết quả nghiên cứu liên quan để làm cơ sở cho các mã ban đầu. Phân tích nội dung tổng hợp bao gồm việc đếm và so sánh, thường là các từ khóa hoặc nội dung, tiếp theo là diễn giải bối cảnh cơ bản. Các tác giả phân định các quy trình phân tích cụ thể cho từng cách tiếp cận và các kỹ thuật nhằm nâng cao độ tin cậy với các ví dụ giả định từ lĩnh vực chăm sóc cuối đời.

#phân tích nội dung #nghiên cứu định tính #hệ hình tự nhiên #mã hóa #độ tin cậy #chăm sóc cuối đời.
Phân loại ImageNet bằng mạng nơ-ron tích chập sâu Dịch bởi AI
Communications of the ACM - Tập 60 Số 6 - Trang 84-90 - 2017

Chúng tôi đã huấn luyện một mạng nơ-ron tích chập sâu lớn để phân loại 1,2 triệu hình ảnh độ phân giải cao trong cuộc thi ImageNet LSVRC-2010 thành 1000 lớp khác nhau. Trên dữ liệu kiểm tra, chúng tôi đạt được tỷ lệ lỗi top-1 và top-5 lần lượt là 37,5% và 17,0%, điều này tốt hơn nhiều so với công nghệ tiên tiến trước đó. Mạng nơ-ron có 60 triệu tham số và 650.000 nơ-ron, bao gồm năm lớp tích chập, một số lớp có kèm theo lớp max-pooling, và ba lớp liên kết hoàn toàn với softmax 1000 chiều cuối cùng. Để tăng tốc quá trình huấn luyện, chúng tôi đã sử dụng nơ-ron không bão hòa và một triển khai GPU rất hiệu quả của phép toán tích chập. Để giảm thiểu hiện tượng quá khớp trong các lớp liên kết hoàn toàn, chúng tôi đã áp dụng một phương pháp điều hòa được phát triển gần đây gọi là "dropout" và đã chứng tỏ rất hiệu quả. Chúng tôi cũng đã tham gia một biến thể của mô hình này trong cuộc thi ILSVRC-2012 và đạt được tỷ lệ lỗi kiểm tra top-5 chiến thắng là 15,3%, so với 26,2% đạt được bởi bài dự thi đứng thứ hai.

#ImageNet #mạng nơ-ron tích chập sâu #phân loại hình ảnh #quy tắc dropout #hiệu suất mạng nơ-ron
Bộ công cụ phân tích bộ gen: Một khung MapReduce cho việc phân tích dữ liệu giải trình tự DNA thế hệ tiếp theo Dịch bởi AI
Genome Research - Tập 20 Số 9 - Trang 1297-1303 - 2010

Các dự án giải trình tự DNA thế hệ tiếp theo (NGS), chẳng hạn như Dự án Bộ Gen 1000, đã và đang cách mạng hóa sự hiểu biết của chúng ta về sự biến dị di truyền giữa các cá nhân. Tuy nhiên, các tập dữ liệu khổng lồ được tạo ra bởi NGS—chỉ riêng dự án thí điểm Bộ Gen 1000 đã bao gồm gần năm terabase—làm cho việc viết các công cụ phân tích giàu tính năng, hiệu quả và đáng tin cậy trở nên khó khăn ngay cả đối với những cá nhân có kiến thức tính toán phức tạp. Thực tế, nhiều chuyên gia gặp phải giới hạn về quy mô và sự dễ dàng trong việc trả lời các câu hỏi khoa học bởi sự phức tạp trong việc truy cập và xử lý dữ liệu do những máy này tạo ra. Trong bài báo này, chúng tôi thảo luận về Bộ công cụ Phân tích Bộ Gen (GATK) của chúng tôi, một khung lập trình có cấu trúc được thiết kế để tạo điều kiện thuận lợi cho sự phát triển của các công cụ phân tích hiệu quả và đáng tin cậy dành cho các máy giải trình tự DNA thế hệ tiếp theo sử dụng triết lý lập trình hàm MapReduce. GATK cung cấp một bộ mẫu truy cập dữ liệu nhỏ nhưng phong phú, bao trùm hầu hết các nhu cầu của công cụ phân tích. Việc tách biệt các tính toán phân tích cụ thể khỏi hạ tầng quản lý dữ liệu chung cho phép chúng tôi tối ưu hóa khung GATK về độ chính xác, độ ổn định, và hiệu quả CPU và bộ nhớ, cũng như cho phép phân giải song song bộ nhớ chia sẻ và phân tán. Chúng tôi nhấn mạnh các khả năng của GATK bằng cách mô tả việc triển khai và ứng dụng các công cụ đáng tin cậy và dung nạp quy mô như máy tính phủ và gọi đa hình đơn nucleotide (SNP). Chúng tôi kết luận rằng khung lập trình GATK cho phép các nhà phát triển và nhà phân tích nhanh chóng và dễ dàng viết các công cụ NGS hiệu quả và đáng tin cậy, nhiều công cụ trong số đó đã được tích hợp vào các dự án giải trình tự quy mô lớn như Dự án Bộ Gen 1000 và Atlas Bộ Gen Ung thư.

#khoa học #giải trình tự DNA #Bộ Gen 1000 #GATK #MapReduce #phân tích bộ gen #sự biến dị di truyền #công cụ NGS #phân giải song song #SNP #Atlas Bộ Gen Ung thư
Phân Tích Chính Xác Năng Lượng Tương Quan Điện Tử Phụ Thuộc Spin cho Các Tính Toán Mật Độ Spin Địa Phương: Phân Tích Phê Phán Dịch bởi AI
Canadian Journal of Physics - Tập 58 Số 8 - Trang 1200-1211 - 1980

Chúng tôi đánh giá các hình thức gần đúng khác nhau cho năng lượng tương quan trên mỗi phần tử của khí điện tử đồng nhất có phân cực spin, những hình thức này đã được sử dụng thường xuyên trong các ứng dụng của xấp xỉ mật độ spin địa phương vào chức năng năng lượng trao đổi-tương quan. Bằng cách tính toán lại chính xác năng lượng tương quan RPA như là một hàm của mật độ điện tử và phân cực spin, chúng tôi chứng minh sự không đầy đủ của các xấp xỉ thông thường trong việc nội suy giữa các trạng thái para-magnet và ferro-magnet, đồng thời giới thiệu một công thức nội suy mới chính xác. Một kỹ thuật xấp xỉ Padé được sử dụng để nội suy chính xác các kết quả Monte Carlo gần đây (para và ferro) của Ceperley và Alder vào phạm vi mật độ quan trọng cho các nguyên tử, phân tử và kim loại. Các kết quả này có thể được kết hợp với sự phụ thuộc vào spin của RPA để tạo ra một năng lượng tương quan cho một khí điện tử đồng nhất có phân cực spin với sai số tối đa được ước tính là 1 mRy và do đó có thể xác định đáng tin cậy mức độ của các hiệu chỉnh không địa phương đối với xấp xỉ mật độ spin địa phương trong các hệ thống thực.

#khí điện tử đồng nhất #phân cực spin #xấp xỉ mật độ spin địa phương #năng lượng tương quan #nội suy Padé #Ceperley và Alder #tương quan RPA #từ tính #hiệu chỉnh không địa phương
Phân tích và hiển thị mô hình biểu hiện toàn bộ hệ gene Dịch bởi AI
Proceedings of the National Academy of Sciences of the United States of America - Tập 95 Số 25 - Trang 14863-14868 - 1998
Một hệ thống phân tích cụm cho dữ liệu biểu hiện gene toàn bộ hệ gene từ sự lai tạp của microarray DNA được mô tả sử dụng các thuật toán thống kê chuẩn để sắp xếp các gene theo mức độ tương đồng trong biểu đồ biểu hiện gene. Đầu ra được hiển thị dưới dạng đồ thị, truyền tải sự phân cụm và dữ liệu biểu hiện cơ bản đồng thời dưới một hình thức trực quan cho các nhà sinh học. Chúng tôi đã tìm thấy trong nấm men nở hoa Saccharomyces cerevisiae rằng việc phân cụm dữ liệu biểu hiện gene nhóm các gene có chức năng tương tự đã biết lại với nhau một cách hiệu quả, và chúng tôi cũng tìm thấy xu hướng tương tự trong dữ liệu của con người. Do đó, các mô hình thấy được trong các thí nghiệm biểu hiện toàn bộ hệ gene có thể được diễn giải như các chỉ dẫn về trạng thái của các quá trình tế bào. Hơn nữa, việc đồng biểu hiện của các gene biết chức năng với các gene ít được đặc trưng hoặc mới có thể cung cấp một cách đơn giản để có được manh mối chức năng của nhiều gene mà thông tin hiện tại chưa có sẵn.
#phân tích cụm #biểu hiện gene #hệ gen toàn bộ #lai tạp microarray #Saccharomyces cerevisiae #quá trình tế bào #đồng biểu hiện #chức năng gene
Một số mô hình ước tính sự không hiệu quả về kỹ thuật và quy mô trong phân tích bao hàm dữ liệu Dịch bởi AI
Management Science - Tập 30 Số 9 - Trang 1078-1092 - 1984

Trong bối cảnh quản lý, lập trình toán học thường được sử dụng để đánh giá một tập hợp các phương án hành động thay thế có thể, nhằm lựa chọn một phương án tốt nhất. Trong khả năng này, lập trình toán học phục vụ như một công cụ hỗ trợ lập kế hoạch quản lý. Phân tích Bao hàm Dữ liệu (DEA) đảo ngược vai trò này và sử dụng lập trình toán học để đánh giá ex post facto hiệu quả tương đối của các thành tựu quản lý, dù chúng được lập kế hoạch hoặc thực hiện như thế nào. Lập trình toán học do đó được mở rộng để sử dụng như một công cụ kiểm soát và đánh giá các thành tựu quá khứ cũng như công cụ hỗ trợ lập kế hoạch cho hoạt động tương lai. Hình thức tỷ lệ CCR được giới thiệu bởi Charnes, Cooper và Rhodes, như một phần của cách tiếp cận Phân tích Bao hàm Dữ liệu, bao hàm cả sự không hiệu quả về kỹ thuật và quy mô thông qua giá trị tối ưu của hình thức tỷ lệ, được thu được trực tiếp từ dữ liệu mà không cần yêu cầu định trước các trọng số và/hoặc phân định rõ ràng các dạng chức năng giả định của mối quan hệ giữa đầu vào và đầu ra. Một sự tách biệt giữa hiệu quả kỹ thuật và hiệu quả quy mô được thực hiện bởi các phương pháp phát triển trong bài báo này mà không làm thay đổi các điều kiện sử dụng DEA trực tiếp trên dữ liệu quan sát. Sự không hiệu quả về kỹ thuật được xác định bởi sự thất bại trong việc đạt được các mức đầu ra tốt nhất có thể và/hoặc việc sử dụng quá nhiều lượng đầu vào. Các phương pháp để xác định và điều chỉnh phạm vi của những sự không hiệu quả này, được cung cấp trong các công trình trước, được minh họa. Trong bài báo hiện tại, một biến mới được giới thiệu, cho phép xác định liệu các hoạt động được thực hiện trong các vùng có lợi suất tăng, không đổi hay giảm (trong các tình huống đa đầu vào và đa đầu ra). Các kết quả được thảo luận và liên hệ không chỉ với kinh tế học cổ điển (đầu ra đơn) mà còn với các phiên bản kinh tế học hiện đại hơn được xác định với “lý thuyết thị trường có thể tranh đấu.”

#Phân tích bao hàm dữ liệu #không hiệu quả kỹ thuật #không hiệu quả quy mô #lập trình toán học #lý thuyết thị trường có thể tranh đấu
Hướng tới một lý thuyết dựa trên tri thức về doanh nghiệp Dịch bởi AI
Strategic Management Journal - Tập 17 Số S2 - Trang 109-122 - 1996
Tóm tắt

Với những giả định về đặc tính của tri thức và các yêu cầu tri thức của sản xuất, doanh nghiệp được khái niệm hóa như một tổ chức tích hợp tri thức. Đóng góp chính của bài báo là khám phá các cơ chế điều phối mà qua đó các doanh nghiệp tích hợp tri thức chuyên môn của các thành viên của mình. Khác với tài liệu trước đây, tri thức được nhìn nhận là tồn tại trong từng cá nhân, và vai trò chính của tổ chức là ứng dụng tri thức hơn là tạo ra tri thức. Lý thuyết hình thành này có những tác động đối với cơ sở của khả năng tổ chức, các nguyên tắc thiết kế tổ chức (đặc biệt là phân tích hệ thống cấp bậc và sự phân bố quyền ra quyết định) và các yếu tố quyết định của ranh giới ngang và dọc của doanh nghiệp. Nhìn chung, cách tiếp cận dựa trên tri thức mở ra cái nhìn mới về những đổi mới tổ chức hiện hành và xu hướng phát triển, đồng thời có những tác động sâu rộng đến thực tiễn quản lý.

#Doanh nghiệp #Tri thức #Tích hợp tri thức #Thiết kế tổ chức #Khả năng tổ chức #Đổi mới tổ chức #Phân phối quyền ra quyết định #Hệ thống cấp bậc #Ranh giới doanh nghiệp #Quản lý
Phân tích phương sai phân tử suy ra từ khoảng cách giữa các haplotype DNA: ứng dụng dữ liệu hạn chế của DNA ty thể người. Dịch bởi AI
Genetics - Tập 131 Số 2 - Trang 479-491 - 1992
Toát yếu

Chúng tôi trình bày một khung nghiên cứu về sự biến đổi phân tử trong một loài. Dữ liệu về sự khác biệt giữa các haplotype DNA đã được tích hợp vào một định dạng phân tích phương sai, xuất phát từ ma trận khoảng cách bình phương giữa tất cả các cặp haplotype. Phân tích phương sai phân tử (AMOVA) này cung cấp các ước tính về thành phần phương sai và các đồng vị thống kê F, được gọi là phi-statistics, phản ánh sự tương quan của độ đa dạng haplotype ở các cấp độ phân chia thứ bậc khác nhau. Phương pháp này khá linh hoạt để thích ứng với các ma trận đầu vào thay thế, tương ứng với các loại dữ liệu phân tử khác nhau, cũng như các giả định tiến hóa khác nhau, mà không làm thay đổi cấu trúc cơ bản của phân tích. Ý nghĩa của các thành phần phương sai và phi-statistics được kiểm định bằng cách tiếp cận hoán vị, loại bỏ giả định về chuẩn tính thông thường trong phân tích phương sai nhưng không phù hợp cho dữ liệu phân tử. Áp dụng AMOVA cho dữ liệu haplotype DNA ty thể của con người cho thấy, sự phân chia dân số được giải quyết tốt hơn khi một số biện pháp khác biệt phân tử giữa các haplotype được đưa vào phân tích. Tuy nhiên, ở cấp độ nội bộ loài, thông tin bổ sung từ việc biết quan hệ phân loại chính xác giữa các haplotype hoặc thông qua việc dịch phi tuyến thay đổi vị trí hạn chế thành độ đa dạng nucleotide không làm thay đổi đáng kể cấu trúc di truyền dân số suy luận. Các nghiên cứu Monte Carlo cho thấy việc lấy mẫu vị trí không ảnh hưởng căn bản tới ý nghĩa của các thành phần phương sai phân tử. Việc xử lý AMOVA dễ dàng mở rộng theo nhiều hướng khác nhau và cấu thành một khung hợp lý và linh hoạt cho việc phân tích thống kê dữ liệu phân tử.

#phân tích phương sai phân tử #haplotype DNA #phi-statistics #phương pháp hoán vị #dữ liệu ty thể người #chia nhỏ dân số #cấu trúc di truyền #giả định tiến hóa #đa dạng phân tử #mẫu vị trí
Tổng số: 2,809   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 10